
Block Editor Best Practices
For users, designers, and developers

https://iamdani.sh | danishshakeel54@gmail.com

Danish Shakeel
Senior Software Engineer @

https://iamdani.sh | https://linkedin.com/in/danishshakeel | https://github.com/danish17

2

https://iamdani.sh
https://linkedin.com/in/danishshakeel
https://github.com/danish17

“Gutenberg may be the most hated feature of
WordPress”

3

4

“Gutenberg is trying to appeal to both ‘simple’ and
‘advanced’ users, and thus is doing neither one of

them fairly well.”

5

6

Pain points during the project
● No support for CSS Grid

● No support for viewport-based styles

● Not possible to add anything but text in list block

● No support for negative margins

● No support for custom width for blocks

● No support for simple animations and interactions

● Decisions - block or pattern?

7

Outline

8

● Using Block Editor
● Developing Block Themes (and blocks)
● Improving Site Experience

Using Block Editor

9

Blocks

● Atomic elements
● Consistent design across posts and pages
● Can be developed using JavaScript, React, and PHP
● Core blocks:

○ Paragraph (core/paragraph)
○ Button (core/button)
○ …and more

● Total core blocks (including experimental) as of Sep 5: 101

10

Patterns

● Combination of blocks
● Holistically serves a single purpose (generally)
● Examples:

○ Call-to-action banners
○ Gallery
○ Hero section

11

Synced vs Unsynced Patterns

● Synced:
○ Define once
○ Use anywhere
○ Change once

● Unsynced:
○ Define once
○ Use anywhere
○ Change anywhere

12

How would you create a section showing
business hours?

13

Demo

Templates and Template Parts

● Section of a page (template part)
● Or, an entire page (template)
● Defines site layout
● Does not serve a single purpose
● Examples:

○ Header (template part)
○ Single Post

14

Patterns vs Templates

15

Template Part Synced Pattern
(Reusable block)

Regular Pattern

Type Site structure User content User content

Syncing
Ability

Synced Synced Un-synced

Examples Header
Footer

Sidebar

Business hours
Banner

Call to action
button

Gallery
Hero section

The idea of components

● Requirements of components:
○ control the markup/structure (HTML)
○ control the styling (CSS)
○ add dynamic/editable data
○ add interactivity (JS)
○ load only when used

● Blocks almost qualify BUT they are atomic
● Examples:

○ Carousel
○ Card

16

So, what can be used as a component?

● Custom blocks
○ very customizable
○ flexible
○ Time-consuming

● In future, a combination of:
○ Synced patterns
○ Pattern Overrides/Content Locking (structure)
○ Section Styles (styling)
○ Block Bindings API (data)
○ Interactivity API (scripts)

17

Stylebook

● Site Editor (formerly Full-Site Editing/FSE) feature
● Visual representation of theme.json (we’ll learn about it later)
● Can be used to modify global styles

○ Typography
○ Layouts
○ Colors

● Can be used to modify core block styles
● Can be used to add additional CSS

18

Developing block themes

19

Custom blocks: theme or plugin?

● Almost always, plugins
● If the blocks are highly coupled with the theme; maybe in theme
● Blocks should not rely on theme functionality

20

Directory Structure
your-blocks-plugin

├── assets/ // non-php code

│ ├── block-extensions/ // extensions for core blocks

│ ├── block-variations/ // variations for core blocks

│ ├── blocks/ // your custom blocks javascript

│ ├── js/ // other scripts

│ ├── styles/ // css

│ └── lib/ // utilities

├── inc/ // usually php code

│ ├── classes/ // plugin-related functionality

│ ├── helpers/ // helper functions

│ └── traits/ // we use singleton trait

├── tests/

└── your-blocks-plugin.php

21

theme.json

● theme.json is powerful!
● Understanding the capability is important
● Helps achieve

○ Consistency
○ Configurability
○ Variability (Style Variations)
○ Templatization

● Define as many styles to theme.json as possible
● See WordPress Docs

22

https://developer.wordpress.org/themes/global-settings-and-styles/

Use Fluid Typography

● The old approach: media queries
○ hard to account for all screen sizes
○ hard to maintain multiple media queries

● Fluid Typography
○ Improved UX
○ Easy to maintain
○ Greater design freedom
○ Greater flexibility
○ Improved A11Y

23

Use Fluid Typography [cont’d…]

24

.text {
 font-size: clamp(min-value, pref-value, max-value);
}

"settings": {
 "typography": {
 "fluid": true,
 "fontSizes": [
 {
 "name": "Medium",
 "slug": "medium",
 "size": "2.375rem", // preferred value
 "fluidSize": {
 "min": "1.875rem", // used below 768px
 "max": "2.375rem" // used above 1600px
 }
 }
]
 }
}

Use block.json

● Standard way to register block types (PHP or JS)
● Allows code sharing between PHP and JS
● Simplifies server-side registration of blocks (useful for Block Type Endpoint)
● Asset enqueuing optimization

○ only be enqueued when the block is present on the page
○ reduced page sizes

● See WordPress Docs

25

https://developer.wordpress.org/rest-api/reference/block-types/
https://developer.wordpress.org/block-editor/reference-guides/block-api/block-metadata/

Extending Core Blocks vs Custom Blocks

26

Core Blocks Custom Blocks

Avoid recreating the wheel by making the

most of existing features; saves time

Developers have more control over the
final product.

Streamlines the development process for

faster production and delivery

Poses less risk for disruption from
breaking changes in WordPress core.

Can benefit from future enhancements to the

WordPress core block

Developers typically have a lot of
experience in developing new blocks.

Adding Video Controls to Cover Video

27

Case Study

Use Internationalization (i18n)

● Everyone knows why it is important.

● Jeder weiß, warum es wichtig ist.

● 每個人都知道為什麼它很重要。

● ہر کوئی جانتا ہے کہ یہ کیوں ضروری ہے۔

● हर कोई जानता है क यह क्यों महत्वपूणर्ण है।

28

Use WordPress Components

● Always try to use @wordpress/components for editor UI
● Improves Editorial Experience (EX):

○ Consistent with the rest of the admin pages
○ Familiar functionality
○ Saves a ton of time

● See Storybook

29

https://wordpress.github.io/gutenberg/?path=/docs/docs-introduction--page

Never compromise on code quality

● For JavaScript:
○ ESLint (@wordpress/eslint-plugin/recommended-with-formatting)

● For PHP:
○ PHPCS (PHP Coding Standards)
○ PHPCBF (PHP Code Beautifier and Fixer)

● For CSS or other flavors:
○ Stylelint (@wordpress/stylelint-config/scss)

30

Structure your block code properly

● Blocks are usually JS/React-heavy
● Use structure and naming standards in JS ecosystem

31

Documentation is key (and the lock)

● Developers usually struggle with documentation
● Use doc-comments and inline-comments
● Don’t beat around the bush!
● Good comment:

○ Explain intent
○ Warn of consequences
○ Use identifiers: @todo etc

32

Improving Site Experience

33

Site = Editor + Frontend

34

Keeping Responsiveness in Mind

● Block editor lacks out-of-box responsive controls
● It is a double-edged sword:

○ Nice-to-have for editors
○ Nightmare for developers and designers

● Designers:
○ Keep the layouts intuitive and follow natural flow
○ Define breakpoints (and stick to them)
○ Recommended breakpoints: 1920px, 1470px, 1280px, 768px, 360px*

● Developers:
○ Hope that the designers do a good job 🤞
○ Always use relative units (rem, %, vh, vw, etc.)
○ Be ready to write media queries
○ May need to use plugins (like Block Visibility)

35

https://wordpress.com/plugins/block-visibility

Keeping Responsiveness in Mind [cont’d…]

36>=1280px <1280px

Accessibility

● Cross-check the order of headings (use Outline in the editor)
● Do not miss out on the alt attribute
● Make sure that your content is keyboard-accessible (for devs: tabindex)
● Make use of ARIA attributes
● Ensure that the contrast is WCAG-compliant
● If you’re overriding element behavior, use role attribute

37

Final Words

● Plan your website properly
● Gutenberg is powerful, it is just misunderstood
● Honest opinion: for certain use-cases, Gutenberg makes no sense
● Learn about the core functionality; there is usually a WordPress way
● Follow D.R.Y and K.I.S.S
● Keep accessibility and performance in mind
● Contribute to the community!

38

Questions?

39

Thank you!
See you on 23.01.2025

40

